Probablity & Statistics

Back to Home

Last updated: 22 Sept 2025

Basics

Set Theory

  1. $\ A \subseteq B => A\ subset\ of\ B $
  2. $\ A = B => A\subseteq B \ and \ B\subseteq A$
  3. $\ Empty\ set (\phi) => Set\ with\ no\ element => \phi\ is\ contained in every set$

Operations with sets

$A\cup B = { x: x \in A\ or\ x \in B }$
$A\cap B = { x: x \in A\ and \ x \in B }$
$A^c = { x : x\notin A }$

Suppose we have an $\Gamma$ be indexing set and we have {$A_\alpha ,\ \alpha \in \Gamma$} be collection of sets indexed by $\Gamma$

then , $\bigcup\limits_{\alpha\in\Gamma} A_\alpha = { x : x \in A_\alpha\ for\ some\ \alpha \in \Gamma}$

and $\bigcap\limits_{\alpha\in\Gamma} A_\alpha = { x : x \in A_\alpha\ for\ every\ \alpha \in \Gamma}$

  1. A and B are disjoint if $A \cap B = \phi$, A and B are Mutually Exclusive

  2. $A_1, A_2, ..... $ are pairwise disjoint if $A_i \cap A_j = \phi \qquad \forall\ i \neq j$

  3. $A_1, A_2, ..... $ is a partition of S if :

  4. $A_1, A_2,...$ are pairwise disjoint

  5. $\bigcup\limits_{i} A_i = S$

Sigma Algebra

Probablity Function

Conditional Probablity & Independence

Bayes Theorum

Counting

\ Without Replacement With Replacement
Ordered ${}^nP_k = \frac{n!}{(n-1)!}$ $n^k$
Unordered ${}^nC_k = \frac{n!}{(n-k)!\ *\ k!}$ ${}^{n+k-1}C_k$