Probablity & Statistics
Last updated: 22 Sept 2025
Basics
-
Experiment : Repeatable task with well defined outcomes
-
Sample Space : All possible outcomes of an experiment
-
Event : A subset of sample space of experiment $E\subseteq S$
Set Theory
- $\ A \subseteq B => A\ subset\ of\ B $
- $\ A = B => A\subseteq B \ and \ B\subseteq A$
- $\ Empty\ set (\phi) => Set\ with\ no\ element => \phi\ is\ contained in every set$
Operations with sets
$A\cup B = { x: x \in A\ or\ x \in B }$
$A\cap B = { x: x \in A\ and \ x \in B }$
$A^c = { x : x\notin A }$
Suppose we have an $\Gamma$ be indexing set and we have {$A_\alpha ,\ \alpha \in \Gamma$} be collection of sets indexed by $\Gamma$
then , $\bigcup\limits_{\alpha\in\Gamma} A_\alpha = { x : x \in A_\alpha\ for\ some\ \alpha \in \Gamma}$
and $\bigcap\limits_{\alpha\in\Gamma} A_\alpha = { x : x \in A_\alpha\ for\ every\ \alpha \in \Gamma}$
-
A and B are disjoint if $A \cap B = \phi$, A and B are Mutually Exclusive
-
$A_1, A_2, ..... $ are pairwise disjoint if $A_i \cap A_j = \phi \qquad \forall\ i \neq j$
-
$A_1, A_2, ..... $ is a partition of S if :
-
$A_1, A_2,...$ are pairwise disjoint
-
$\bigcup\limits_{i} A_i = S$
Sigma Algebra
-
Collection of subsets of S
-
Satisfying
-
$\phi \in \mathcal{B}$
-
if $A \in \mathcal{B},\ then\ A^c \in \mathcal{B}$
-
if $A_1, A_2, A_3,... \in \mathcal{B}$, then $\bigcup\limits_{i=1}\limits^{\infty} A_i \in \mathcal{B}$, (closed under countable unions).
-
${\phi, S}$ is trivial sigma algebra associated with S.
Probablity Function
-
Probablity function for pair (S, $\mathcal{B}$) is defined for P:$\mathcal{B}\ \rightarrow \mathbb{R} $ if it satisfies below Axioms of Probablity:
-
$P(A) \geq 0 \qquad \forall A\in \mathcal{B}$
-
P(S) = 1
-
if $A_1, A_2, A_3,... \in \mathcal{B}$, are pairwise disjoint (countable) then $P(\bigcup\limits_{i=1}\limits^{\infty}) = \sum\limits_{i=1}\limits^{\infty}P(A_i) $)
-
Properties of Probablity fn :
-
P($\phi$) = 0
-
P(A) $\le$ 1
-
P($A^c$) = 1 - P(A)
-
0 $\le P(A) \le$ 1
-
$P(B\cap A^c) = P(B) - P(A\cap B)$
-
$P(A \cup B) = P(A) + P(B) - P(A\cup B)$
-
if $A \subseteq B$ => P(A) $\le$ P(B)
Conditional Probablity & Independence
-
Conditional P : Decision under influence of info
-
P(A|B) = Probablity of A given B has occured
-
$P(A|B) = \frac{P(A\ \cap\ B)}{P(B)}$
-
Multiplication Rule : $P(A\cap B) = P(A|B)P(B) = P(B|A)P(A)$
-
Independent Events : $A, B \subseteq S\ are\ independent\ iff$
-
$P(A|B) = P(A) \quad <=> \quad P(B|A) = P(B)$
Bayes Theorum
-
use prior probablities to calculate posterior probablities
-
$P(A_j | B) = \frac{P(B|A_j)*P(A_j)}{\sum\limits_{i-1}\limits^{n} P(B|A_i) * P(A_i)} $, all probablities on rhs are prior probs
Counting
-
Fundamental Theory of Counting
-
Let T be task of perfoming k tasks sequentially : $T_1, T_2,....T_k$ that can be permormed in $n_1, n_2,....n_k$ ways,
-
Total no of ways to perform T = $n_1n_2...*n_k$
\ | Without Replacement | With Replacement |
---|---|---|
Ordered | ${}^nP_k = \frac{n!}{(n-1)!}$ | $n^k$ |
Unordered | ${}^nC_k = \frac{n!}{(n-k)!\ *\ k!}$ | ${}^{n+k-1}C_k$ |